Year 6 Knowledge Organiser
Computing — Programming

Herne

Key Vocabulary

Key Knowledge

What | should already know.

Solve open ended problems with a floor robot, screen turtle and other
programmable devices.

Design, write and run executable programs using a programming language e.g.
that used for a floor robot, Scratch, Kodu, Espresso Coding.

Be able to debug an algorithm (set of instructions) and correct any errors.

Use repetition in programs to make them more efficient. E.g. Rpt4[FD5 RT90]
to draw a square with Roamer.

Be able to explore the effect of changing variables. Use them to make and test
predictions.

Use 'selection' in a programming sequence i.e. use 'if... then... else..." type
actions or statements e.g. if a character is touching a wall then bounce back,
else move forward.

Predict how a provided algorithm will behave before testing it (e.g. write a
program or procedure in symbols and ask pupils to 'write the story' of the
outcome before testing it.)

Represent an algorithm symbolically (e.g. as a flow chart) to plan a procedure.
Develop algorithms which include 'if' statements (e.g. if the temperature drops
below...) and loops (e.g. repeat [an instruction] 4 times)

Develop more complex flow diagrams and procedures that draw on others
(e.g. program traffic lights either end of a narrow bridge so that cars don't
collide)

Refine procedures (algorithms) to improve efficiency and achieve desired
outcomes.

Create a program which includes a method of scoring (e.g. each time a sprite
bumps into a particular object increase the score and each time it bumps into
another object decrease the score).

Create a program that requires a timer and set the variables as appropriate to
the program (e.g. set a timer for a contestant to solve a maze within 30
seconds).

Algorithm
Procedure
If
Loops
Variables
Constants
Refine

Decompose

Online Safety

Understand that algorithms may be
decomposed into component parts
(procedures), each of which is itself
an algorithm.

Understand the need for precision
when creating algorithm:s.
Understand the importance of
planning, testing and correcting
algorithms.

Understand that an input can be used
to control the behaviour of a
program.

Explain logically, using appropriate
technical language, how some simple
algorithms work.

Understand the difference between
constants and variables.

What will | know by the end of the unit?

Predict how a provided algorithm will behave before testing it (e.g. write
a program or procedure in symbols and ask pupils to 'write the story' of
the outcome before testing it).

Represent an algorithm symbolically (e.g. as a flow chart) to plan a
procedure.

Develop algorithms which include 'if' statements (e.g. if the temperature
drops below...) and loops (e.g. repeat [an instruction] 4 times).

Develop more complex flow diagrams and procedures that draw on
others (e.g. program traffic lights either end of a narrow bridge so that
cars don't collide).

Refine procedures (algorithms) to improve efficiency and achieve desired
outcomes.

Be E-safe
and enjoy!

Software

when [clicked

